コンピュータが情報を表現する方法

コンピュータが情報を表現する方法

コンピュータが情報を表現する方法

コンピュータは「0(ゼロ)」と「1(イチ)」のふたつの数だけを使って、すべての情報を表現します。情報とはコンピュータに保存されている「数字」「文字」「写真」「動画」「音楽」や、さらにコンピュータに対して「たし算をしろ」や「写真を表示しろ」などの命令もふくむ、コンピュータがあつかうものすべてです。コンピュータがあつかう情報のことを「データ」とも呼びます。

たとえば数字と文字であれば、コンピュータは内部では以下のような「0」と「1」の数字だけであらわしています。
「123」という数字 1111011
「A」という文字 01000001
「あ」という文字 1000001010100000

では、この「0」と「1」というのをコンピュータ内部ではどのように扱っているのでしょうか。

コンピュータはコンセントやバッテリー(電池)から電気をもらわなければ動くことができないことから、コンピュータが電気で動いているということは知っていると思います。この電気を使って、コンピュータ内部では「電気があるONの状態」「電気がないOFFの状態」のふたつの状態を「0」と「1」の数字組み合わせてあらわしているのです。電球でたとえると以下のようになります。

>
電球電気の状態対応する数字
電気がないOFFの状態0
電気があるONの状態1

このように電源の「ON」と「OFF」に対応する「0」と「1」だけですべてをあらそうとするコンピュータですが、下のように仮に数字を表そうとしても、ひと桁では2通りの情報しかあらわせません。

「0」は「0」
「1」は「1」

そこで、コンピュータは桁(けた)を増やして表わせる情報を倍増させています。たとえば、桁をひとつ増やして、2けたとした場合は、以下のように「4通り」の数を表すことができます。

「00」は「0」
「01」は「1」
「10」は「2」
「11」は「3」」

そして、さらにけたを増やして、2けたから3けたにすれば、「4通り」のさらに倍の「8通り」の数を表すことができます。

「000」は「0」
「001」は「1」
「010」は「2」
「011」は「3」
「100」は「4」
「101」は「5」
「110」は「6」
「111」は「7」

つまり、けたを増やすと、「2の累乗」ごとに表わせる数が増えて行きます。「累乗」とは、同じ数をかけ算していくことです。ここでいう、「2の累乗」とは「2」という同じ数をけたの数ぶん、かけ算するということです。たとえば、2の2乗であれば、「」のように書きます。はじめになんの数をかけるのかを書いて、その右上に小さく何回かけるかを書きます。

上で説明した内容をこの「累乗」としてあらわすと以下のようになります。

0乗1乗2乗3乗
書き方
計算式2 x 0 = 12 x 1 = 22 x 2 = 42 x 2 x 2 = 8
何通りか1通り2通り4通り8通り

この「けたの数」のことを「ビット(bit)」といいます。コンピュータが私たち一般の人にも使えるようになったのは、1970年代のころですが、このころのコンピュータは「8ビット」でした。つまり、けたの数が「8」なので、で、「2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 256」となり「256通り」の情報しか表現できませんでした。このころでは、ふつうに使われる数でも2000種類になる「漢字」は、まだ一般的には使えなく、「ABC」などのアルファベットと、「アイウ」などのカタカナだけの表現でした。
しかし、2010年代のコンピュータは「32ビット」があたりまえとなり、「4,294,967,296通り(40億通り)」の情報を表現できるようにまでなりました。

このようにコンピュータは「0(ゼロ)」と「1(イチ)」だけを駆使して、情報を表現します。



スポンサーリンク

管理人


ホーム サイトマップ
HOME